CBCS Scheme

15MAT11 USN

First Semester B.E. Degree Examination, June/July 2017 **Engineering Mathematics - I**

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

a. Obtain the nth derivative of $\frac{x}{(x-1)^2(x+2)}$. (06 Marks)

b. Find the angle of intersection of the curves $r = a(1+\sin\theta)$ and $r = a(1-\sin\theta)$. (05 Marks)

c. Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (05 Marks)

OR

a. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, then prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

(06 Marks)

b. Obtain the pedal equation of the curve $r^n = a^n \cos n\theta$.

(05 Marks)

c. Find the derivative of arc length of $x = a (\cos t + \log \tan (\frac{1}{2}))$ and $y = a \sin t$.

(05 Marks)

a. Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log_e (1.1)$, correct to four decimal (06 Marks)

b. If
$$z = \sin(ax + y) + \cos(ax - y)$$
, prove that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$. (05 Marks)

c. If
$$u = x^2 + y^2 + z^2$$
, $v = xy + yz + zx$, $w = x + y + z$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (05 Marks)

4 a. If
$$u(x+y) = x^2 + y^2$$
, then prove that $\left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)^2 = 4\left(1 - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)$. (06 Marks)

b. Evaluate
$$\underset{x \to 0}{\text{L1}} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{1/2}$$
. (05 Marks)

c. If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
, then prove that $x u_x + y u_y + z u_z = 0$. (05 Marks)

- a. A particle moves on the curve $x = \frac{\text{Module-3}}{2t^2}$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} - 3\hat{j} + 2\hat{k}$. (06 Marks)
 - b. If $\vec{f} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$, find a, b, c such that \vec{f} is
 - c. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point

15MAT11

- OR
 a. Find the directional derivative of $xy^3 + yz^3$ at (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{i} + 2\hat{k}$ (06 Marks)
 - b. If $\vec{u} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ and $\vec{v} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that $\vec{u} \times \vec{v}$ is a solenoidal vector.

c. For any scalar field ϕ and any vector field \dot{f} , prove that curl $(\phi \, \dot{f}) = \phi$ curl $\dot{f} + (\text{grad }\phi) \times \dot{f}$.

Module-4

a. Obtain the reduction formula for $\int \cos^n x \, dx$, where n is a positive integer, hence evaluate

$$\int_{0}^{\pi/2} \cos^{n} x dx . \tag{06 Marks}$$

- b. Solve: $(x^2 + y^2 + x) dx + xydy = 0$. (05 Marks)
- c. Find the orthogonal trajectories of the family of circles r = 2 a cos θ , where 'a' is a parameter. (05 Marks)

OR

- **8** a. Evaluate $\int_{0}^{\infty} \frac{x^{6}}{(1+x^{2})^{\frac{9}{2}}} dx$. (06 Marks)
 - b. Solve $xy (1 + x y^2) \frac{dy}{dx} = 1$. (05 Marks)
 - c. Water at temperature 10° C takes 5 minutes to warm upto 20° C in a room temperature 40° C. Find the temperature after 20 minutes. (05 Marks)

Module-5

- Solve the following system of equations by Gauss Elimination Method. (06 Marks) x + 2y + z = 3, 2x + 3y + 2z = 5, 3x - 5y + 5z = 2.
 - b. Find the dominant eigen value and the corresponding eigen vector by power method

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}, \text{ perform 5 iterations, taking initial eigen vector as } \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{T}. \text{ (05 Marks)}$$

c. Show that the transformation $y_1 = 2x + y + z$, $y_2 = x + y + 2z$, $y_3 = x - 2z$ is regular. Write down the inverse transformation.

OR

- Solve the following system of equations by Gauss Seidel method. (06 Marks) 10x + 2y + z = 9, x + 10y - z = -22, -2x + 3y + 10z = 22.
 - b. Reduce the matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$ to the diagonal form. (05 Marks)
 - c. Reduce $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form. (05 Marks)